Test Construction for Mathematical Functions
نویسنده
چکیده
The article deals with problems of testing implementations of mathematical functions working with floating-point numbers. It considers current standards’ requirements to such implementations and demonstrates that those requirements are not sufficient for correct operation of modern systems using sophisticated mathematical modeling. Correct rounding requirement is suggested to guarantee preservation of all important properties of implemented functions and to support high level of interoperability between different mathematical libraries and modeling software using them. Test construction method is proposed for conformance test development for current standards supplemented with correct rounding requirement. The idea of the method is to use three different sources of test data: floating-point numbers satisfying specific patterns, boundaries of intervals of uniform function behavior, and points where correct rounding requires much higher precision than in average. Some practical results obtained by using the method proposed are also
منابع مشابه
A MATHEMATICAL MODEL FOR SELECTING THE PROJECT RISK RESPONSES IN CONSTRUCTION PROJECTS
Risks are natural and inherent characteristics of major projects. Risks are usually considered independently in analysis of risk responses. However, most risks are dependent on each other and independent risks are rare in the real world. This paper proposes a model for proper risk response selection from the responses portfolio with the purpose of optimization of defined criteria for projects. ...
متن کاملStandardization and Testing of Mathematical Functions
The article concerns problems of formulating standard requirements to implementations of mathematical functions working with floating-point numbers and conformance test development for them. Inconsistency and incompleteness of available standards in the domain is demonstrated. Correct rounding requirement is suggested to guarantee preservation of all important properties of functions and to sup...
متن کاملA mathematical multi-objective model for treatment network design (physical-biological-thermal) using modified NSGA II
Today, sustainable development is one of the important issues in regard to the economy of a country. This issue magnifies the necessity for increased scrutiny towards issues such as environmental considerations and product recovery in closed-loop supply chains (CLSCs). The most important motivational factors influencing research on these topics can be considered in two general groups: environme...
متن کاملFractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملOn difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کامل